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Abstract

The network scale-up method enables researchers to estimate the sizes of

hidden populations, such as drug injectors and sex workers, using sampled

social network data. The basic scale-up estimator offers advantages over

other size estimation techniques, but it depends on problematic modeling

assumptions. The authors propose a new generalized scale-up estimator that

can be used in settings with nonrandom social mixing and imperfect aware-

ness about membership in the hidden population. In addition, the new esti-

mator can be used when data are collected via complex sample designs and

from incomplete sampling frames. However, the generalized scale-up estima-

tor also requires data from two samples: one from the frame population and

one from the hidden population. In some situations these data from the hid-

den population can be collected by adding a small number of questions to

already planned studies. For other situations, the authors develop interpreta-

ble adjustment factors that can be applied to the basic scale-up estimator.
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The authors conclude with practical recommendations for the design and

analysis of future studies.
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1. INTRODUCTION

Many important problems in social science, public health, and public

policy require estimates of the sizes of hidden populations. For exam-

ple, in HIV/AIDS research, estimates of the size of the most at-risk

populations—drug injectors, female sex workers, and men who have

sex with men—are critical for understanding and controlling the spread

of the epidemic. However, researchers and policymakers are unsatisfied

with the ability of current statistical methods to provide these estimates

(Joint United Nations Programme on HIV/AIDS 2010). We address this

problem by improving the network scale-up method, a promising

approach to size estimation. Our results are immediately applicable in

many substantive domains in which size estimation is challenging, and

the framework we develop advances the understanding of sampling in

networks more generally.

The core insight behind the network scale-up method is that ordinary

people have embedded within their personal networks information that

can be used to estimate the sizes of hidden populations, if that informa-

tion can be properly collected, aggregated, and adjusted (Bernard et al.

1989, 2010). In a typical scale-up survey, randomly sampled adults are

asked about the number of connections they have to people in a hidden

population (e.g., “How many people do you know who inject drugs?”)

and a series of similar questions about groups of known size (e.g.,

“How many widowers do you know?” “How many doctors do you

know?”). Responses to these questions are called aggregate relational

data (McCormick et al. 2012).

To produce size estimates from aggregate relational data, previous

researchers have begun with the basic scale-up model, which makes

three important assumptions: (1) Social ties are formed completely at

random (i.e., random mixing), (2) respondents are perfectly aware of

the characteristics of their alters, and (3) respondents are able to provide

accurate answers to survey questions about their personal networks.

From the basic scale-up model, Killworth, McCarty, et al. (1998)
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derived the basic scale-up estimator. This estimator, which is widely

used in practice, has two main components. For the first component, the

aggregate relational data about the hidden population are used to esti-

mate the number of connections that respondents have to the hidden

population. For the second component, the aggregate relational data

about the groups of known size are used to estimate the number of con-

nections that respondents have in total. For example, a researcher might

estimate that members of her sample have 5,000 connections to people

who inject drugs and 100,000 connections in total. The basic scale-up

estimator combines these pieces of information to estimate that 5 per-

cent (5, 000=100, 000) of the population injects drugs. This estimate is a

sample proportion, but rather than being taken over the respondents, as

would be typical in survey research, the proportion is taken over the

respondents’ alters. Researchers who desire absolute size estimates mul-

tiply the alter sample proportion by the size of the entire population,

which is assumed to be known (or estimated using some other method).

Unfortunately, the three assumptions underlying the basic scale-up

model have all been shown to be problematic. Scale-up researchers call

violations of the random mixing assumption barrier effects (Killworth

et al. 2006; Maltiel et al. 2015; Zheng, Salganik, and Gelman 2006),

they call violations of the perfect awareness assumption transmission

error (Killworth et al. 2006; Maltiel et al. 2015; Salganik, Mello, et al.

2011; Shelley et al. 1995, 2006), and they call violations of the respon-

dent accuracy assumption recall error (Killworth et al. 2003, 2006;

Maltiel et al. 2015; McCormick and Zheng 2007).

In this paper, we develop a new approach to producing size estimates

from aggregate relational data. Rather than depending on the basic

scale-up model or its variants (e.g., Maltiel et al. 2015), we use a simple

identity to derive a series of new estimators. Our new approach reveals

that one of the two main components of the basic scale-up estimator is

problematic. Therefore, we propose a new estimator—the generalized

scale-up estimator—that combines the aggregate relational data tradi-

tionally used in scale-up studies with similar data collected from the

hidden population. Collecting data from the hidden population is a

major departure from current scale-up practice, but we believe that it

enables a more principled approach to estimation. For researchers who

are not able to collect data from the hidden population, we propose a

series of adjustment factors that highlight the possible biases of the

basic scale-up estimator. Ultimately, researchers must balance the
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trade-offs between the basic scale-up estimator, generalized scale-up

estimator, and other size estimation techniques on the basis of the spe-

cific features of their research setting.

In Section 2, we derive the generalized scale-up estimator, and we

describe the data collection procedures needed to use it. In Section 3, we

compare the generalized and basic scale-up approaches analytically and

with simulations; our comparison leads us to propose a decomposition

that separates the difference between the two approaches into three mea-

surable and substantively meaningful factors (equation 15). In Section 4,

we make practical recommendations for the design and analysis of

future scale-up studies, and in Section 5, we conclude with a discussion

of the steps that follow. Appendices A to G in the online journal provide

technical details and supporting arguments.

2. THE GENERALIZED SCALE-UP ESTIMATOR

The generalized scale-up estimator can be derived from a simple

accounting identity that requires no assumptions about the underlying

social network structure in the population. Figure 1 helps illustrate the

derivation, which was inspired by earlier research on multiplicity esti-

mation (Sirken 1970) and indirect sampling (Lavallée 2007). Consider a

population of seven people, two of whom are drug injectors (Figure 1a).

In this population, two people are connected by a directed edge i! j if

person i would count person j as a drug injector when answering the

question “How many drug injectors do you know?” Whenever i! j,

we say that i makes an out-report about j and that j receives an in-

report from i.1

Each person can be viewed as both a source of out-reports and a reci-

pient of in-reports, and in order to emphasize this point, Figure 1b shows

the population with each person represented twice: on the left as a sen-

der of out-reports and on the right as a receiver of in-reports. This visual

representation highlights the following identity:

total out-reports = total in-reports: ð1Þ

Despite its simplicity, the identity in equation (1) turns out to be very

useful because it leads directly to the new estimator that we propose.

In order to derive an estimator from equation (1), we must define

some notation. Let U be the entire population, and let H � U be

the hidden population. Furthermore, let yi, H be the total number of
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out-reports from person i (i.e., person i’s answer to the question “How

many drug injectors do you know?”). For example, Figure 1b shows

that person 5 would report knowing one drug injector, so y5, H = 1. Let

vi, U be the total number of in-reports to i if everyone in U is inter-

viewed; that is, vi, U is the visibility of person i to people in U . For

example, Figure 1b shows that person 5 would be reported as a drug

injector by three people so v5, U = 3. Because total out-reports must

equal total in-reports, it must be the case that

yU , H = vU , U , ð2Þ

where yU , H =
P

i2U yi, H and vU , U =
P

i2U vi, U . Multiplying both sides

of equation (2) by NH , the number of people in the hidden population,

and then rearranging terms, we get

NH =
yU , H

vU , U=NH

: ð3Þ

Equation (3) is an expression for the size of the hidden population

that does not depend on any assumptions about network structure or

reporting accuracy; it is just a different way of expressing the identity

that the total number of out-reports must equal the total number of in-

reports. If we could estimate the two terms on the right side of equation

(3)—one term related to out-reports (yU , H ) and one term related to in-

reports (vU , U=NH )—then we could estimate NH .

However, in order to make the identity in equation (3) useful in prac-

tice we need to modify it to account for an important logistical require-

ment of survey research. In real scale-up studies, researchers do not

sample from the entire population U , but instead they sample from a

subset of U called the frame population, F. For example, in almost all

scale-up studies the frame population has been adults (but note that our

mathematical results hold for any frame population). In standard survey

research, restricting interviews to a frame population does not cause

problems because inference is being made about the frame population.

In other words, when respondents report about themselves, it is clear to

which group inferences apply. However, with the scale-up method,

respondents report about others, so the group that inferences are being

made about is not necessarily the same as the group that is being inter-

viewed. As we show in Section 4.2, failure to consider this fact requires

the introduction of an awkward adjustment factor that had previously

158 Feehan and Salganik



gone unnoticed. Here, we avoid this awkward adjustment factor by

deriving an identity explicitly in terms of the frame population.

Restricting our attention to out-reports coming from people in the frame

population, it must be the case that

NH =
yF, H

vU , F=NH

, ð4Þ

where yF, H =
P

i2F yi, H and vU , F =
P

i2U vi, F . The only difference

between equation (3) and equation (4) is that equation (4) restricts out-

reports and in-reports to come from people in the frame population

(Figure 1c). The identity in equation (4) is extremely general: it does

not depend on any assumptions about the relationship between the

entire population U , the frame population F, and the hidden population

H . For example, it holds if no members of the hidden population are in

the frame population, if there are barrier effects, and if there are trans-

mission errors. Thus, if we could estimate the two terms on the right

side of equation (4)—one term related to out-reports (yF, H ) and one

term related to in-reports (vU , F=NH )—then we could estimate NH under

very general conditions.

Unfortunately, despite repeated attempts, we were unable to develop

a practical method for estimating the term related to in-reports

(vU , F=NH ). However, if we make an assumption about respondents’

reporting behavior, then we can re-express equation (4) as an identity

made up of quantities that we can actually estimate. Specifically, if we

assume that the out-reports from people in the frame population only

include people in the hidden population, then it must be the case that

the visibility of everyone not in the hidden population is 0:

vi, F = 0 for all i 62 H . In this case, we can rewrite equation (4) as

NH =
yF, H

vH , F=NH

=
yF, H

�vH , F

if vi, F = 0 for all i 62 H , ð5Þ

where �vH , F = vH , F=NH .

To understand the reporting assumption substantively, consider the

two possible types of reporting errors: false positives and false nega-

tives. Previous scale-up research on transmission error focused on the

problem of false negatives, where a respondent is connected to a mem-

ber of the hidden population but does not report this, possibly because

she is not aware that the person she is connected to is in the hidden pop-

ulation (Bernard et al. 2010). Because hidden populations such as drug

Generalizing the Network Scale-up Method 159



injectors are often stigmatized, it is reasonable to suspect that false nega-

tives will be a serious problem for the scale-up method. Fortunately,

equation (5) holds even if there are false negative reporting errors.

However, false positives—which do not seem to have been considered

previously in the scale-up literature—are also possible. For example, a

respondent who is not connected to any drug injectors might report that

one of her acquaintances is a drug injector. These false positive reports

are not accounted for in the identity in equation (5) and the estimators

that we derive subsequently. If false positive reports exist, they will intro-

duce a positive bias into estimates from the generalized scale-up estima-

tor. Therefore, in Appendix A in the online journal we (1) formally

define an interpretable measure of false positive reports, the precision of

out-reports; (2) analytically show the bias in size estimates as a function

of the precisions of out-reports; and (3) discuss two research designs that

could enable researchers to estimate the precision of out-reports.

2.1. Estimating NH from Sampled Data

Equation (5) relates our quantity of interest, the size of the hidden popu-

lation (NH ), to two other quantities: the total number of out-reports from

the frame population (yF, H ) and the average number of in-reports in the

hidden population (�vH , F). We now show how to estimate yF, H with a

probability sample from the frame population and �vH , F with a relative

probability sample from the hidden population.

The total number of out-reports (yF, H ) can be estimated from respon-

dents’ reported number of connections to the hidden population,

byF, H =
X
i2sF

yi, H

pi

, ð6Þ

where sF denotes the sample, yi, H denotes the reported number of con-

nections between i and H , and pi is i’s probability of inclusion from a

conventional probability sampling design from the frame population.

Because byF, H is a standard Horvitz-Thompson estimator, it is consistent

and unbiased as long as all members of F have a positive probability of

inclusion under the sampling design (Sarndal, Swensson, and Wretman

1992); for a more formal statement, see Result B.1. This estimator

depends only on an assumption about the sampling design for the frame

population, and in Table D.2, we show the sensitivity of our estimator

to violations of this assumption.
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Estimating the average number of in-reports for the hidden population

(�vH , F) is more complicated. First, it will usually be impossible to obtain

a conventional probability sample from the hidden population. As we

show below, however, estimating �vH , F requires only a relative probabil-

ity sampling design in which hidden population members have a nonzero

probability of inclusion and respondents’ probabilities of inclusion are

known up to a constant of proportionality, cpi (see Appendix C.1 in the

online journal for a more precise definition). Of course, even selecting a

relative probability sample from a hidden population can be difficult.

A second problem arises because we do not expect respondents to be

able to easily and accurately answer direct questions about their visibi-

lity (vi, F). That is, we do not expect respondents to be able to answer

questions such as “How many people on the sampling frame would

include you when reporting a count of the number of drug injectors that

they know?” Instead, we propose asking hidden population members a

series of questions about their connections to certain groups and their

visibility to those groups. For example, each sampled hidden population

respondent could be asked “How many widowers do you know?” and

then “How many of these widowers are aware that you inject drugs?”

This question pattern can be repeated for many groups (e.g., widowers,

doctors, bus drivers). We call data with this structure enriched aggregate

relational data to emphasize its similarity to the aggregate relational

data that is familiar to scale-up researchers. An interviewing procedure

called the game of contacts enables researchers to collect enriched

aggregated relational data, even in realistic field settings (Salganik,

Mello, et al. 2011; Maghsoudi et al. 2014).

Given a relative probability sampling design and enriched aggregate

relational data, we can now formalize our proposed estimator for �vH , F .

Let A1, A2, . . . , AJ , be the set of groups about which we collect enriched

aggregate relational data (e.g., widowers, doctors). Here, to keep the

notation simple, we assume that these groups are all contained in the

frame population, so that Aj � F for all j; in Appendix C.4 in the online

journal, we extend the results to groups that do not meet this criterion.

Let A be the concatenation of these groups, which we call the probe

alters. For example, if A1 is widowers and A2 is doctors, then the probe

alters A is the collection of all widowers and all doctors, with doctors

who are widowers included twice. Also, let ~vi, Aj
be respondent i’s report

about her visibility to people in Aj and let vi, Aj
be respondents i’s actual

visibility to people in Aj (i.e., the number of times that this respondent
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would be reported about if everyone in Aj was asked about their connec-

tions to the hidden population).

The estimator for �vH , F is

byH , F =
NF

NA

P
i2sH

P
j eyi , Aj

�
cpið ÞP

i2sH
1= cpið Þ , ð7Þ

where NA is the number of probe alters, c is the constant of proportion-

ality from the relative probability sample, and sH is a relative probability

sample of the hidden population. Equation (7) is a standard weighted

sample mean (Sarndal et al. 1992, Section 5.7) multiplied by a constant,

NF=NA. Result C.2 shows that this estimator is consistent and essentially

unbiased,2 when three conditions are satisfied: one about the design of

the survey, one about reporting behavior, and one about sampling from

the hidden population.

The first condition underlying the estimator in equation (7) is related

to the design of the survey, and we call it the probe alter condition. This

condition describes the required relationship between the visibility of

the hidden population to the probe alters and the visibility of the hidden

population to the frame population:

vH ,A
NA

=
vH , F

NF

, ð8Þ

where vH ,A is the total visibility of the hidden population to the probe

alters, vH , F is the total visibility of the hidden population to the frame

population, NA is the number of probe alters, and NF is the number of

people in the frame population. In words, equation (8) says that the rate

at which the hidden population is visible to the probe alters must be the

same as the rate at which the hidden population is visible to the frame

population. For example, in a study to estimate the number of drug

injectors in a city, drug treatment counselors would be a poor choice for

membership in the probe alters because drug injectors are probably

more visible to drug treatment counselors than to typical members of

the frame population. On the other hand, postal workers would probably

be a reasonable choice for membership in the probe alters because drug

injectors are probably about as visible to postal workers as they are to

typical members of the frame population. Additional results about the

probe alter condition are presented in the online appendices: (1) Result

C.3 presents three other algebraically equivalent formulations of probe
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alter condition, some of which offer additional intuition; (2) Result C.4

provides a method to empirically test the probe alter condition; and (3)

Table D.1 quantifies the bias introduced when the probe alter condition

is not satisfied.

The second condition underlying the estimator b�vH , F (equation 7) is

related to reporting behavior, and we call it accurate aggregate reports

about visibility:

~vH ,A = vH ,A, ð9Þ

where ~vH ,A is the total reported visibility of members of the hidden

population to the probe alters (
P

i2H

P
Aj2A ~vi, Aj

) and vH ,A is the total

actual visibility of members of the hidden population to the probe alters

(
P

i2H

P
Aj2A vi, Aj

). In words, equation (9) says that hidden population

members must be correct in their reports about their visibility to probe

alters in aggregate, but equation (9) does not require the stronger condi-

tion that each individual report be accurate. In practice, we expect that

there are two main ways that there might not be accurate aggregate

reports about visibility. First, hidden population members might not be

accurate in their assessments of what others know about them. For

example, research on the “illusion of transparency” suggests that people

tend to overestimate how much others know about them (Gilovich,

Savitsky, and Medvec 1998). Second, although we propose asking hid-

den population members what other people know about them (e.g.,

“How many of these widowers know that you are a drug injector?”)

what actually matters for the estimator is what other people would

report about them (e.g., “How many of these widowers would include

you when reporting a count of the number of drug injectors that they

know?”). In cases in which the hidden population is extremely stigma-

tized, some respondents to the scale-up survey might conceal the fact

that they are connected to people whom they know to be in the hidden

population, and if this were to occur, it would lead to a difference

between the information that we collect (~vi,A) and the information that

we want (vi,A). Unfortunately, there is currently no empirical evidence

about the possible magnitude of these two problems in the context of

scale-up studies. However, Table D.1 quantifies the bias introduced into

estimates if the accurate aggregate reports about visibility condition is

not satisfied.
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Finally, the third condition underlying the estimator b�vH , F (equation

7) is that researchers have a relative probability sample from the hidden

population. Currently the most widely used method for drawing relative

probability samples from hidden populations is respondent-driven sam-

pling (Heckathorn 1997); see Volz and Heckathorn (2008) for a set of

conditions under which respondent-driven sampling leads to a relative

probability sample. Although respondent-driven sampling has been used

in hundreds of studies around the world (White et al. 2015), there is

active debate about the characteristics of samples that it yields

(Bengtsson and Thorson 2010; Gile and Handcock 2010, 2015; Gile,

Johnston, and Salganik 2015; Goel and Salganik 2010; Heimer 2005; Li

and Rohe 2015; McCreesh et al. 2012; Mills et al. 2012; Rohe 2015;

Rudolph et al. 2013; Salganik 2012; Scott 2008; Yamanis et al. 2013).

If other methods for sampling from hidden populations are demon-

strated to be better than respondent-driven sampling (e.g., see Karon

and Wejnert 2012; Kurant, Markopoulou, and Thiran 2011; Mouw and

Verdery 2012), then researchers should consider these methods when

using the generalized scale-up estimator. Furthermore, researchers can

use Table D.2 to quantify the bias that results if the condition requiring

a relative probability sample is not satisfied.

To recap, using two different data collection procedures—one with

the frame population and one with the hidden population—we can esti-

mate the two components of the expression for NH given in equation

(5). The estimator for the numerator (byF, H ) depends on an assumption

about the ability to select a probability sample from the frame popula-

tion (see Result B.1), and the estimator for the denominator (b�vH , F)

depends on assumptions about survey construction, reporting behavior,

and the ability to select a relative probability sample from the hidden

population (see Result C.2).

We can combine these component estimators to form the generalized

scale-up estimator:

bNH =
byF, HbyH , F

: ð10Þ

Result C.8 proves that the generalized scale-up estimator will be con-

sistent and essentially unbiased if (1) the estimator for the numerator

(byF, H ) is consistent and essentially unbiased, (2) the estimator for the
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denominator (b�vH , F) is consistent and essentially unbiased, and (3) there

are no false positive reports.

One attractive feature of the generalized scale-up estimator (equation

10) is that it is a combination of standard survey estimators. This struc-

ture enabled us to derive very general sensitivity results about the impact

of violations of assumptions, either individually or jointly. We return to

the issue of assumptions and sensitivity analysis when discussing recom-

mendations for practice (Section 4).

3. COMPARISON BETWEEN THE GENERALIZED AND
BASIC SCALE-UP APPROACHES

In Section 2, we derived the generalized network scale-up estimator by

using an identity relating in-reports and out-reports as the basis for a

design-based estimator. The approach we followed differs from previ-

ous scale-up studies, which have posited the basic scale-up model and

derived estimators conditional on that model. In this section, we com-

pare these two different approaches from a design-based perspective.

We begin our comparison by reviewing the basic scale-up model,

which was used in most of the studies listed in Table 1. To review this

model, we need to define another quantity: we call di, U person i’s degree,

the number of undirected network connections she has to everyone in U .

The basic scale-up model assumes that each person’s connections are

formed independently, that reporting is perfect, and that visibility is per-

fect (Killworth, McCarty, et al. 1998). Together, these three assumptions

lead to the probabilistic model:

yi, Aj
= di, Aj

;Binomial di, U ,
NAj

N

� �
, ð11Þ

for all i in U and for any group Aj. In words, this model suggests that

the number of connections from a person i to members of a group Aj is

the result of a series of di, U independent random draws, where the prob-

ability of each edge being connected to Aj is
NAj

N
.

The basic scale-up model leads to what we call the basic scale-up

estimator:

bNH =

P
i2sF

yi, HP
i2sF

bdi, U

3N , ð12Þ
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where bdi, U is the estimated degree of respondent i from the known pop-

ulation method (Killworth, Johnsen, et al. 1998). Killworth, McCarty, et

al. (1998) showed that equation (12) is the maximum likelihood estima-

tor for NH under the basic scale-up model, conditional on the additional

assumption that di, U is known for each i 2 sF .

Given this background, we can now compare the basic and general-

ized scale-up approaches by comparing their estimands; that is, we

compare the quantities that they produce in the case of a census with

perfectly observed degrees. The basic scale-up estimand can be written

bNH =
yF, H

dF, U

3N =
yF, H

dU , F

, ð13Þ

where dF, U =
P

i2F di, U and �dU , F = dU , F=N = dF, U=N . Furthermore, as

shown in Section 2, the generalized scale-up estimand is

bNH =
yF, H

yH , F

: ð14Þ

Comparing equations (13) and (14) reveals that both estimands have

the same numerator, but they have different denominators. The network

reporting identity from Section 2 (total out-reports = total in-reports)

shows that the appropriate way to adjust the out-reports is based on in-

reports, as in the generalized scale-up approach. However, the basic

scale-up approach instead adjusts out-reports with the degree of respon-

dents. Although using the degree of respondents cleverly avoids any

data collection from the hidden population, our results reveal that it will

be correct only under a very specific special case (�dU , F = �vH , F).

To further clarify the relationship between the basic and generalized

scale-up approaches, we propose a decomposition that separates the dif-

ference between the two estimands into three measurable and substan-

tively meaningful adjustment factors:

NH =
yF, H

�dU , F

� �
|fflfflfflffl{zfflfflfflffl}

basic
scale-up

3
1

�dF, F=�dU , F|fflfflfflfflfflffl{zfflfflfflfflfflffl}
frame ratio

fF

3
1

�dH , F=�dF, F|fflfflfflfflfflffl{zfflfflfflfflfflffl}
degree ratio

dF

3
1

�vH , F=�dH , F|fflfflfflfflfflffl{zfflfflfflfflfflffl}
true positive rate

tF|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
adjustment factors

=
yF, H

�vH , F

� �
|fflfflfflffl{zfflfflfflffl}

generalized
scale-up

: ð15Þ

The decomposition shows that when the product of the adjustment

factors is 1, the two estimands are both correct. However, when the

Generalizing the Network Scale-up Method 167



product of the adjustment factors is not 1, then the generalized scale-up

estimand is correct but the basic scale-up estimand is incorrect. We

now describe each of the three adjustment factors in turn.

First, we define the frame ratio, fF , to be

fF =
avg # connections from a member of F to the rest of F

avg # connections from a member of U to F
=

�dF, F

�dU , F

: ð16Þ

fF can range from 0 to infinity, and in most practical situations we

expect that fF will be greater than 1. Result B.6 shows that we can

make consistent and essentially unbiased estimates of fF from a sample

of F.3

Next, we define the degree ratio dF to be

dF =
avg # connections from a member of H to F

avg # connections from a member of F to the rest of F
=

�dH , F

�dF, F

: ð17Þ

dF ranges from 0 to infinity, and it is less than 1 when the hidden popu-

lation members have, on average, fewer connections to the frame popu-

lation than frame population members. Result C.6 shows that we can

make consistent and essentially unbiased estimates of dF from samples

of F and H .

Finally, we define the true positive rate, tF , to be

tF =
# in-reports to H from F

# edges connecting H and F
=

vH , F

dH , F

=
�vH , F

�dH , F

: ð18Þ

tF relates network degree to network reports.4 tF ranges from 0, if none

of the edges are correctly reported, to 1 if all of the edges are reported.

Substantively, the more stigmatized the hidden population, the closer we

would expect tF to be to 0. Result C.7 shows that we can make consis-

tent and essentially unbiased estimates of tF from a sample of H .

Furthermore, the decomposition in equation (15) can be used to

derive an expression for the bias in the basic scale-up estimator when

we have a census and degrees are known:

bias bN basic
H

� �
[bN basic

H � NH ð19Þ

= bN basic
H 1� 1

fFdFtF

� 	
: ð20Þ
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The comparison between the basic and generalized scale-up

approaches leads to two main conclusions. First, the estimand of the

basic scale-up approach is correct only in one particular situation: when

the product of the three adjustment factors is 1. The estimand of gener-

alized scale-up approach, in contrast, is correct more generally. Second,

as equation 15 shows, if the adjustment factors are known (or have been

estimated), then they can be used to improve basic scale-up estimates.

3.1. Illustrative Simulation

To illustrate our comparison between the basic and generalized scale-up

approaches, we conducted a series of simulation studies. The simula-

tions were not meant to be a realistic model of a scale-up study, but

rather, they were designed to clearly illustrate our analytic results. More

specifically, the simulation investigated the performance of the estima-

tors as three important quantities vary: (1) the size of the frame popula-

tion F, relative to the size of the entire population U ; (2) the extent to

which people’s network connections are not formed completely at ran-

dom; and (3) the accuracy of reporting, as captured by the true positive

rate tF (see equation 18).5

As described in detail in Appendix G in the online journal, we cre-

ated populations of 5, 000 people with different proportions of the popu-

lation on the sampling frame (pF). Next, we connected the people with

a social network created by a stochastic block model (Wasserman and

Faust 1994; White, Boorman, and Breiger 1976) in which the random-

ness of the mixing was controlled by a parameter r such that r = 1 is

equivalent to random mixing (i.e., an Erdos-Reyni random graph) and

the mixing becomes more nonrandom as r! 0. Then, for each combi-

nation of parameters, we drew 10 populations, and within each of these

populations, we simulated 500 surveys. For each survey, we drew a

probability sample of 500 people from the frame population, a relative

probability sample of 30 people from the hidden population, and simu-

lated responses with a specific level of reporting accuracy (tF). Finally,

we used these reports and the appropriate sampling weights to calculate

the basic and generalized scale-up estimates.

Figure 2 shows that the simulations support our analytic results. First,

the simulations show that the generalized scale-up estimator is unbiased

even in the presence of incomplete sampling frames, nonrandom mix-

ing, and imperfect reporting. Second, they show that the basic scale-up
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Figure 2. Estimated size of the hidden population for the generalized and
basic scale-up estimators. Each panel shows how the two estimators change as
the amount of random mixing is varied from low (r = 0:1; members of the
hidden population are relatively unlikely to form contacts with nonmembers) to
high (r = 1; members of the hidden population form contacts independent of
other people’s hidden population membership). The columns show results for
different sizes of the frame population, from small (left column, pF = 0:1), to
large (right column, pF = 1). The rows show results for different levels of
reporting accuracy, from a small amount of true positives (top row, tF = 0:1), to
perfect reporting (bottom row, tF = 1). For example, looking at the middle of
the center panel, when pF = 0:5, tF = 0:5, and r = 0:5, we see that the average
basic scale-up estimate is about 50, while the average generalized scale-up
estimate is 150 (the true value). The generalized scale-up estimator is unbiased
for all parameter combinations, while the basic scale-up estimator is only
unbiased for certain special cases (e.g., when r = 1, tF = 1, and pF = 1). Full
details of the simulation are presented in Appendix G in the online journal.
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estimator is unbiased in a much smaller set of situations. More concre-

tely, the basic scale-up estimator is unbiased in situations in which the

basic scale-up model holds—when everyone is in the frame population

(pF = 1), there is random mixing (r = 1), and respondents’ reports are

perfect (tF = 1).6 Furthermore, Figure 3 illustrates that our analytic

approach (equation 3) can correctly predict the bias of the basic scale-

up estimator.

Figure 3. Bias (open circles and diamonds) and predicted bias (solid lines) in
the basic scale-up estimates and generalized scale-up estimates for the same
parameter configurations depicted in Figure 2. Our analytical results (equation
20) accurately predict the bias observed in our simulation study.
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4. RECOMMENDATIONS FOR PRACTICE

The results in Sections 2 and 3 lead us to recommend a major departure

from current scale-up practice. In addition to collecting a sample from

the frame population, we recommend that researchers consider collecting

a sample from the hidden population so that they can use the generalized

scale-up estimator. As our results clarify, researchers using the scale-up

method face a decision: they can collect data from the hidden population

or they can make assumptions about the adjustment factors described in

Section 3. The appropriate decision depends on a number of factors, but

we think that two are most important: (1) the difficulty of sampling from

the hidden population and (2) the availability of high-quality estimates of

the adjustment factors in Section 3. For example, if it is particularly diffi-

cult to sample from a specific hidden population and high-quality esti-

mates of the adjustment factors are already available, then a basic scale-

up estimator may be appropriate. If, however, it is possible to sample from

the hidden population and there are no high-quality estimates of adjust-

ment factors, then the generalized scale-up estimator may be appropriate.

Many realistic situations will be somewhere between these two extremes,

and the trade-offs must be weighed on a case-by-case basis.

To aid researchers deciding between basic and generalized scale-up

approaches, we collected the conditions needed for consistent and essen-

tially unbiased estimates into Table 2; formal proofs of these results are

presented in Online Appendices B and C. We find it helpful to group

these conditions into four broad categories: sampling, survey construc-

tion, network structure, and reporting behavior.

A review of the conditions in Table 2 necessarily raises practical

concerns. In situations in which researchers are trying to make estimates

about real hidden populations, they probably will not know how close

they are to meeting these conditions. Therefore, researchers may won-

der how their estimates will be affected by violations of these assump-

tions, both individually (e.g., “How would my estimates be affected if

there was a problem with the survey construction?”) and jointly (e.g.,

“How would my estimate be affected if there was a problem with my

survey construction and reporting behavior?”). To address this concern,

in Appendix D in the online journal, we develop a framework for sensi-

tivity analysis that shows researchers exactly how estimates will be

affected by violations of all assumptions, either individually or jointly.

Table 3 summarizes the results of our sensitivity framework.
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Another problem researchers face in practice is putting appropriate

confidence intervals around estimates. The procedure currently used in

scale-up studies was proposed by Killworth, McCarty, et al. (1998), but

it has a number of conceptual problems, and in practice, it produces

intervals that are anticonservative (i.e., the actual coverage rate is lower

than the desired coverage rate). Both of these problems—theoretical

and empirical—do not seem to be widely appreciated in the scale-up lit-

erature. Therefore, instead of the current procedure, we recommend that

researchers use the rescaled bootstrap procedure (Rao, Wu, and Yue

1992; Rao and Wu 1988; Rust and Rao 1996), which has strong theore-

tical foundations, does not depend on the basic scale-up model, can han-

dle both simple and complex sample designs, and can be used for both

the basic scale-up estimator and the generalized scale-up estimator. In

Appendix F in the online journal, we review the current scale-up confi-

dence interval procedure and the rescaled bootstrap, highlighting the

conceptual advantages of the rescaled bootstrap. Furthermore, we show

that the rescaled bootstrap produces slightly better confidence intervals

in three real scale-up data sets: one collected via simple random sam-

pling (McCarty et al. 2001) and two collected via complex sample

designs (Salganik, Fazito, et al. 2011; Rwanda Biomedical Center

2012). Finally, and somewhat disappointingly, our results show that

none of the confidence interval procedures work very well in an abso-

lute sense, a finding that highlights an important problem for future

research.

We now provide more specific guidance for researchers based on the

data they decide to collect. In Section 4.1 we present recommendations

for researchers who collect a sample from both the frame population, F,

and the hidden population, H ; in Section 4.2, we present recommenda-

tions for researchers who only select a sample from the frame

population.

4.1. Estimation with Samples from F and H

We recommend that researchers who have samples from F and H use

a generalized scale-up estimator to produce estimates of NH (see

Section 2):

bNH =
byF, HbyH , F

: ð21Þ
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For researchers using the generalized scale-up estimator, we have

three specific recommendations. Of all the conditions needed for consis-

tent and essentially unbiased estimation, the ones most under the control

of the researcher are those related to survey construction, so we recom-

mend that researchers focus on these during the study design phase. In

particular, we recommend that the probe alters be designed so that the

rate at which the hidden population is visible to the probe alters is the

same as the rate at which the hidden population is visible to the frame

population (see Result C.2 for a more formal statement, and see Section

C5 for more advice about choosing probe alters). Second, when present-

ing estimates, we recommend that researchers use the results in Table 3

to also present sensitivity analyses highlighting how the estimates may

be affefcted by assumptions that are particularly problematic in their

setting. Finally, we recommend that researchers produce confidence

intervals around their estimate using the rescaled bootstrap procedure,

keeping in mind that this will likely produce intervals that are

anticonservative.

We also have three additional recommendations that will facilitate

the cumulation of knowledge about the scale-up method. First, although

the generalized scale-up estimator does not require aggregate relational

data from the frame population about groups of known size, we recom-

mend that researchers collect these data so that the basic and generalized

estimators can be compared. Second, we recommend that researchers

publish estimates of dF and tF , although these quantities play no role in

the generalized scale-up estimator (Figure 4). As a body of evidence

about these adjustment factors accumulates (e.g., Salganik, Fazito, et al.

2011; Maghsoudi et al. 2014), studies that are not able to collect a sam-

ple from the hidden population will have an empirical foundation for

adjusting basic scale-up estimates, either by borrowing values directly

from the literature or by using published values as the basis for priors in

a Bayesian model. Finally, we recommend that researchers design their

data collections—both from the frame population and the hidden

population—so that size estimates from the generalized scale-up method

can be compared with estimates from other methods (e.g., see Salganik,

Fazito, et al. 2011a). For example, if respondent-driven sampling is used

to sample from the hidden population, then researchers could use meth-

ods that estimate the size of a hidden population from recruitment pat-

terns in the respondent-driven sampling data (Berchenko, Rosenblatt,
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and Frost 2013; Crawford, Wu, and Heimer 2015; Handcock, Gile, and

Mar 2014, 2015; Johnston et al. 2015; Wesson et al. 2015).

4.2. Estimation with Only a Sample from F

If researchers cannot collect a sample from the hidden population, we

have three recommendations. First, we recommend two simple changes

to the basic scale-up estimator that remove the need to adjust for the

frame ratio, fF . Recall, that the basic scale-up estimator that has been

used in previous studies (see Section 3) is

bNH =
byF, HbdF, U

3N =
byF, HbdF, U

.
N
: ð22Þ

Instead of equation 22, we suggest a new estimator, called the modi-

fied basic scale-up estimator, that more directly deals with the fact that

researchers sample from the frame population F (typically adults), and

not from the entire population U (adults and children):

Figure 4. Recommended schematic of inputs and outputs for a study using
the generalized scale-up estimator. We recommend that researchers produce
size estimates using the generalized scale-up estimator and that researchers
produce estimates of the adjustment factors dF and tF to aid other researchers.
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bNH =
byF, HbdF, F

3NF =
byF, HbdF, F

.
NF

: ð23Þ

There are two differences between the modified basic scale-up esti-

mator (equation 23) and the basic scale-up estimator (equation 22).

First, we recommend that researchers estimate bdF, F (i.e., the total num-

ber of connections between adults and adults) rather than bdF, U (i.e., the

total number of connections between adults and everyone). To do so,

researchers should design the probe alters for the frame population so

that they have similar personal networks to the frame population; in

Appendix B.4 in the online journal, we define this requirement for-

mally, and in Section B.4.1 we provide guidance for choosing the probe

alters. Second, we recommend that researchers use NF rather than N .7

These two simple changes remove the need to adjust for the frame ratio

fF , and thereby eliminate an assumption about an unmeasured quantity.

An improved version of the basic scale-up estimator would then be

bNH =
byF, HbdF, F

.
NF

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

modified basic scale-up

3
1bdF

3
1btF|fflfflfflffl{zfflfflfflffl}

adjustment factors

: ð24Þ

Our second recommendation is that researchers using the modified

basic scale-up estimator (equation 23) perform a sensitivity analysis

using the results in Table 3. In particular, we think that researchers

should be explicit about the values that they assume for the adjustment

factors dF and tF . Our third recommendation is that researchers con-

struct confidence intervals using the rescaled bootstrap procedure, while

explicitly accounting for the fact that there is uncertainty around the

assumed adjustment factors and bearing in mind that this procedure will

likely produce intervals that are anticonservative.

5. CONCLUSION AND NEXT STEPS

In this paper, we developed the generalized network scale-up estimator.

This new estimator improves upon earlier scale-up estimators in several

ways: it enables researchers to use the scale-up method in populations

with nonrandom social mixing and imperfect awareness about member-

ship in the hidden population, and it accommodates data collection with

complex sample designs and incomplete sampling frames. We also
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compared the generalized and basic scale-up estimators, leading us to

introduce a framework that makes the design-based assumptions of the

basic scale-up estimator precise. Finally, researchers who use either the

basic or generalized scale-up estimator can use our results to assess the

sensitivity of their size estimates to assumptions.

The approach we followed to derive the generalized scale-up estima-

tor has three elements, and these elements may prove useful in other

problems related to sampling in networks. First, we distinguished

between the network of reports and the network of relationships.

Second, using the network of reports, we derived a simple identity that

permitted us to develop a design-based estimator free of any assump-

tions about the structure of the network of relationships. Third, we com-

bined data from different types of samples. Together, these three

elements may help other researchers in other situations derive relatively

simple, design-based estimators that are an important complement to

complex, model-based techniques.

Although the generalized scale-up estimator has many attractive fea-

tures, it also requires that researchers obtain two different samples, one

from the frame population and one from the hidden population. In cases

in which studies of the hidden population are already planned (e.g., the

behavioral surveillance studies of the groups most at risk for HIV/

AIDS), the necessary information for the generalized scale-up estimator

could be collected at little additional cost by appending a modest num-

ber of questions to existing questionnaires. In cases in which these stud-

ies are not already planned, researchers can either collect their own data

from the hidden population, or they can use the modified basic scale-up

estimator and borrow estimated adjustment factors from other published

studies.

The generalized scale-up estimator, like all estimators, depends on a

number of assumptions, and we think three of them will be most proble-

matic in practice. First, the estimator depends on the assumption that

there are no false positive reports, which is unlikely to be true in all

situations. Although we have derived an estimator that works even in

the presence of false positive reports (Appendix A in the online jour-

nal), we were not able to design a practical data collection procedure

that would allow us to estimate one of the terms it requires. Second, the

generalized scale-up estimator depends on the assumption that hidden

population members have accurate aggregate awareness about visibility

(equation 9). That is, researchers have to assume that hidden population
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respondents can accurately report whether or not their alters would

report them, and we expect this assumption will be difficult to check in

most situations. Third, the generalized scale-up estimator depends on

having a relative probability sample from the hidden population.

Unfortunately, we cannot eliminate any of these assumptions, but we

have stated them clearly and we have derived the sensitivity of the esti-

mates to violations of these assumptions, individually and jointly.

Our results and their limitations highlight several directions for fur-

ther work, in terms of both of improved modeling and improved data

collection. We think the most important direction for future modeling is

developing estimators in a Bayesian framework, and a recent paper by

Maltiel et al. (2015) offers some promising steps in this direction. We

see two main advantages of the Bayesian approach in this setting. First, a

Bayesian approach would allow researchers to propagate the uncertainty

they have about the many assumptions involved in scale-up estimates,

whereas our current approach captures only uncertainty introduced by

sampling. Furthermore, as more empirical studies produce estimates of

the adjustment factors (tF and dF), a Bayesian framework would permit

researchers to borrow values from other studies in a principled way. In

terms of future directions for data collection, researchers need practical

techniques for estimating the rate of false positive reporting. These esti-

mates, combined with the estimator in Appendix A in the online journal,

would permit the relaxation of one of the most important remaining

assumptions made by all scale-up studies to date. We hope that the

framework introduced in this paper will provide a basis for these and

other developments.
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Notes

1. Throughout the paper, we consider only the case ion which i never reports j more

than once.

2. We use the term essentially unbiased because equation (7) is not, strictly speaking,

unbiased; the ratio of two unbiased estimators is not itself unbiased. However, a

large literature confirms that the biases caused by the nonlinear form of ratio esti-

mators are typically insignificant relative to other sources of error in estimate (e.g.,

Sarndal et al. 1992, chap. 5). Unfortunately, many of the estimators we propose are

actually ratios of ratios, sometimes called “compound ratio estimators” or “double

ratio estimators.” In Appendix E in the online journal, we demonstrate that the bias

caused the nonlinear form of our estimators is not a practical cause for concern.

3. Note that because �dU , F = (NF=N )�dF, U , an equivalent expression for the frame ratio

is fF =
�dF, F

�dF, U (NF=N)
=

�dF, F

�dF, U

N
NF
:

4. Note that the fact that in-reports must equal out-reports means that tF can also be

defined as tF = # reported edges from F actually connected to H

# edges connecting F and H
=

yþ
F, H

dF, H
: Here we have written

yþF, H to mean the true positive reports among theyF, H ; see Appendix A in the online

journal for a detailed explanation.

5. Computer code to perform the simulations was written in R (R Core Team 2014)

and used the following packages: devtools (Wickham and Chang 2013), functional

(Danenberg 2013), ggplot2 (Wickham 2009), igraph (Csardi and Nepusz 2006), net-

workreporting (Feehan and Salganik 2014), plyr (Wickham 2011), sampling (Tillé

and Matei 2015), and stringr (Wickham 2012).

6. In addition to the settings in which the basic scale-up model holds, the basic scale-

up estimator can also be unbiased when its different biases cancel (e.g., when the

product of the adjustment factors is 1).

7. In some cases this difference between NF and N can be substantial. For example, if

F is adults, then in many developing countries, N’2NF .
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